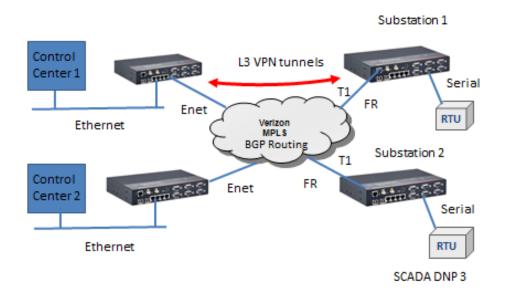
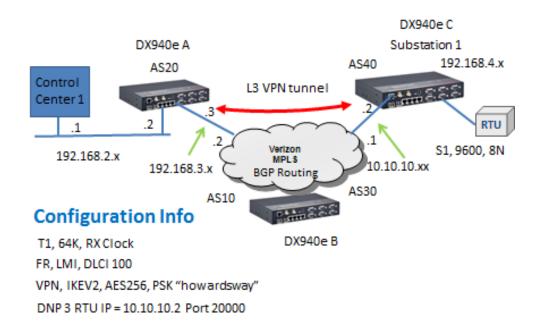


Wissensdatenbank > Produkte > DX/10XTS Routers > DX940e - Router configuration for a SCADA application over Verizon MPLS


DX940e - Router configuration for a SCADA application over Verizon MPLS

John M - 2019-12-23 - DX/10XTS Routers


Overview

This example steps through the various configuration screens to setup a SCADA application using a DX940e's at both the headend and remote sites using Verizon MPLS service offering.

For redundancy, each Control center has simultaneous connections to each remote serial attached RTU and employs L3 VPN tunnels for security.

Configuration Information used in this example:

Accessing the DX940e Configuration system

The initial access to DX940e configuration system can be accessed by direct connection to the units console connection, or via an IP based connection using Telnet or SSH. Access to the WEB interface can be achieved using a WEB browser. If this is a new unit the factory default IP address is 192.168.1.2. Please also note that all ports on a factory default setting will be disabled with the exception of the **highest** Ethernet port number. So for a DX940e connect your PC initially to E6.

If you can't access the DX940e via the Ethernet port, because its address is unknown, then the IP address can be reset via the Console port BOOT application. Using a PC Terminal application such as Putty or TeraTerm and connect to the dedicated CONSOLE port (38,400 bps, no parity, 8 data bits and 1 stop bit) using a standard DB9 cross over cable (supplied with the equipment) and holding down the SPACE bar after a DX940e power cycle. GarrettCom, Inc. MNS-DX ROM version 3.1.7 (Y12) 200/128

*** Hold down SPACE to stop boot process ***

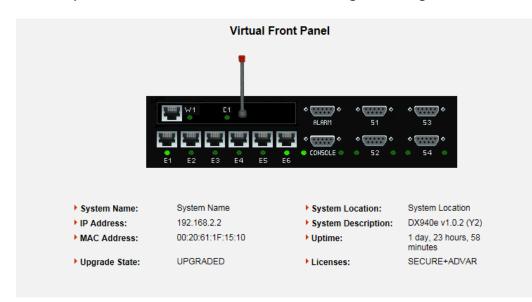
Starting boot menu...

Boot Menu

1: View System Information 2: Assign System IP Address 3: Install Initial Software Image from FTP Server 4: Install Initial Software Image via TFTP 5: Install Initial Software Image via XMODEM 6: Load Temporary Image from FTP Server 7: Load Temporary Image via TFTP 8: Load Temporary Image via XMODEM 9: Restore System to Factory Defaults b: Boot

MNS-DX>

Simply use Option 2: to define the initial IP address, then Option b: to boot. You could also use option "9" to reset all configurations to factory default and the initial IP address of the DX940e would be 192.168.1.2.


Once IP addresses have been assigned one can access to the configuration system, this section covers WEB access.

Once the address is defined then launch a HTTPS: session to the address that was defined. For this example we are using 192.168.2.2 Mask 255.255.255.0.

Please note that only SECURE access methods are enabled by default, so we need to use HTTPS for WEB access, SSH or Direct console for CLI access.

GarrettCom	
Login ID:	
Login	

Default passwords for ADMIN access is "manager/manager"

Initial Virtual Front Panel Web screen showing various system level information including software version etc.

Configurations for DX940e A (Control Center)

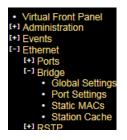
Overview of configurations steps

- 1. Naming the Dx940e
- 2. Ethernet ports
- 3. Un bridging an Ethernet Port
- 4. IP address assignments
- 5. BGP routing
- 6. VPN setup
- 7. Saving configurations

Naming the DX940e

The Administration menu gives a few options for naming/location and contact..

System Name:	DX940e A
System Location:	Control Center
System Contact:	System Contact
System Mode:	Normal 🗸
System Prompt:	MagnumDX
TCP KeepAlive:	15
System Description	: DX940e v1.0.2 (Y2)
Serial Number:	680100036
Licenses:	SECURE+ADVAR
Upgrade State:	UPGRADED
IP Address:	192.168.2.2
MAC Address:	00:20:61:1F:15:10
Free Space (KB):	51206
Uptime:	3 days, 6 minutes


Ethernet Interface Settings

 Virtual Front Panel
[+] Administration
[+] Events
[-] Ethernet
[+] Ports
[+] Bridge
(+) RSTP
[+] VLANs
[+] GOOSE
[+] Serial
[+] WAN
[+] Cellular
(+) PPP
I+1 Routing
[+] Q0S
[+] Security
(+) Wizards

By default all Ethernet ports are ADMIN DISBALED except for port 6. So we need to enable the ports we want to use, in this case E1.

Port ID	Port Name	Port Name Media Type Flow Control			FEFI	Admin Status	
E1	Ethernet-01	Autoneg	<	Disabled \checkmark	Disabled	Enabled 🗸	
E2	Ethernet-02	Autoneg	~	Disabled 🗸	Disabled	Disabled 🗸	
E3	Ethernet-03	Autoneg	~	Disabled 🗸	Disabled	Disabled 🗸	
E4	Ethernet-04	Autoneg	~	Disabled 🗸	Disabled	Disabled 🗸	
E5	Ethernet-05	Autoneg	~	Disabled 🗸	Disabled	Disabled 🗸	
E6	Ethernet-06	Autoneg	~	Disabled 🗸	Disabled	Enabled 🗸	

Also by default all Ethernet ports are bridged and only holds one IP address. In this case we are routing between the Control center and Verizon MPLS network with 2 different subnets, so we need un-bridge at least one port to form 2 subnets.

So here we have un-bridged E1 forming a second sub-net

Ether	net : Bridg	ge : Port Settings
	Port	Bridged?
	E1	No 🗸
	E2	Yes 🗸
	E3	Yes 🗸
	E4	Yes 🗸
	E5	Yes 🗸
	E6	Yes 🗸
•		
R	leset Settings	Apply Settings

IP addresses

We had previously set the IP address of the DX940e to 192.168.2.2/24 but it can be changed from within this sub-menu.

So with an Ethernet port unbridged we now have two IP subnets, so fill in E1 to 192.168.3.3

Default No ✓ 192.168.2.2 255.255.255.0 ● E1 No ✓ 192.168.3.3 255.255.255.0 ●	
E1 No V 192.168.3.3 255.255.255.0 O	Up
	Up
CELL1 No O	Down
	ther Option

BGP Routing

When using a Verizon carrier service like MPLS this usually requires BGP as the routing protocol of preference.

Starting with Global Settings we enable to feature, assign the AS number, and the Router ID which is simply the IP address of the Ethernet port connecting to the Verizon MPLS service.

BGP Mode:	Enabled 🗸
AS Number:	20
Router ID:	192.168.3.3
eBGP Admin Distance:	20
iBGP Admin Distance:	200
Include Ext OSPF:	Disabled 🗸
Event Level	High 🗸

Next BGP Peer Settings, IP addresses for each end of the connection and associated AS numbers. Here I left the Profile as "default" but we will make changes to that profile next.

			Routing : E		er Settings			
BC Nai		ess Local IP Addr	ess Peer AS	Add Peer	Hold Timer Pr (sec)	ofile Inp Filt		
bgp-1	I 0.0.0.0	0.0.0	1	1	40 Defa	ault 🗸 NONE	E 🗸 NONE	✓
			Reset Setti	ings App xisting Peer	y Settings			
BGP Name	Peer IP Address	Local IP Address	Peer AS Loc	Hol al AS Tim (sec	er Profile	Input Filter	Output Filter	MD5 Password Delet
bgp-1	192.168.3.2	192.168.3.3	10 20	40	Default N	NONE V	NONE 🗸	
			Reset Setti	ngs App	y Settings			

Modify the "default" profile next, here we have selected "Redist Static and BGP", this just means we will share information of local IP addresses into the BGP protocol and also learnt IP addresses through BGP placed into the routing table.

		Ro	outing : BG	P : Profiles			
			Add New	Profile			
Profile Name	e Default Router	Redist Redis Static RIP		Redist Weig BGP	ht Private AS		CP ssive
New Profile	No 🗸	No 💙 No 🕚	✓ No ✓	No 💙 100	No 🗸	100 No	$\mathbf{\sim}$
_		Re	set Settings Existing P	Apply Settings Profiles			
Profile Name	Default Redi Router Stat		Redist Redis OSPF BGF		Private AS Lo	cal Pref TCP Passive	Delete
Default	No 🗸 Yes	✓ No ✓	No 🗸 Yes '	✔ 100	Yes 🗸 100	No 🗸	
		Re	set Settings	Apply Settings			

If the unit is connected to the Verizon circuit we should see status information similar to this

Neighbor Ve	ersion	AS#	BGP State	Nets Rcvd	Pkts Sent	Pkts Rcvd	TCP/MD5 Session	Reset	
192.168.3.2	4	10	Established	2	16982	17339	No	None	~
192.106.3.2	4			z t Settings		Settings		None	-

And the RIB table populated with learnt IP addresses.

Prefix	Bits	Source Peer #	Source AS#	Number Hops	Weight	Origin	Local Pref	eBGP/ iBGP
10.10.10.0	24	192.168.3.2	10	1	100	2	0	е
192.168.4.0	24	192.168.3.2	40	2	100	1	0	е

Finally a look at the full IP routing table to check we have full connectivity of the network

Route Destination	Route Mask	Next Hop	Administrative Distance	Metric	Age	Туре
10.10.10.0	255.255.255.0	192.168.3.2	1	0		VPN
127.0.0.1	255.255.255.255	127.0.0.1	0	0		
192.168.2.0	255.255.255.0	192.168.2.2	0	0		Local
192.168.2.2	255.255.255.255	192.168.2.2	0	0		
192.168.3.0	255.255.255.0	192.168.3.3	0	0		Local
192.168.3.3	255.255.255.255	192.168.3.3	0	0		
192.168.4.0	255.255.255.0	192.168.3.2	20	0	177072	BGP

VPN Setup

Since we are using a Public Verizon MPLS service where it might be possible that the SCADA information could be eavesdropped we use a VPN tunnel to provide both authentication and encryption services for the

SCADA traffic.

Starting with Global Settings, turn on "send initial contact"

Send Initial Contact:	Yes 🗸
Automatic VPN Routes:	Yes 🗸
Administrative Distance:	10

Next we build a new profile and selected the version of the IPSec VPN and the encryption settings for the Authentication and Data Transfer phases.

Here I selected the most secure settings, IPsec version IKEV2, AES256 encryption strength and both IKE and ESP Hash to SHA256.

					Securi	ty:VPN:F	Profiles					
						Add Profile						
Name	IKE Vers	ion NAT En	abled IKE En	cryption	IKE Has	h IKE Lifetir (secs)	ne ESP Encryption	ESP Has	h ESP Lifetime (secs)	e DH Gro		D Poll ime
	IKEV1	✓ NO	✓ 3DES	~	SHA	✓ 28800	3DES	SHA SHA	✓ 3600	2 🔪	✓ 30	
					Reset Se	ettings Appl	Settings					
Name	IKE Version	NAT Enabl	led IKE Encry	/ption		Existing Profile IKE Lifetime (secs)	<u> </u>	ESP Hash	ESP Lifetime (secs)	DH Group	DPD Poll Time	Delete
Name	IKE Version					Existing Profile	s	ESP Hash	(secs)			Delete
	_	NO V	3DES	~	IKE Hash	Existing Profile IKE Lifetime (secs)	s ESP Encryption		(secs) 3600	Group	Time	Delete

Now for the actual authentication "shared secret", we can use Pre-Shared Key or you may prefer to build your own private certificates, not covered here. The Pre-shared Key method is just a string of characters, like a password, that is used during authentication of the 2 VPN peers. In this example it was set to "howardsway". As you can see the string is not displayed for security purposes but it is set.

Name	Туре	Preshared Key	Preshared Key Verify	Local Certificat	te
	PSK 🗸			None	$\mathbf{\vee}$
		Reset Settings A	oply Settings		
		Existing Met	nods		
Name	Туре	Preshared Key F	reshared Key Verify	Local Certificate	Dele
Default	PSK 🗸		N	lone 🗸	
coned	PSK 🗸		Ν	lone 🗸	

With all that set we can finally define the tunnel end points , so we want the tunnel to exist throughout the Verizon network, so in this example we want any traffic between 192.168.2.x and 10.10.10.x , ie the Control Station network and remote RTU network and be protected throughout the "public" network and using the new profile and authentication methods. Note the Destination gateway is the IP address of the substation DX940e WAN port and we also selected that the VPN be up and available at all times.

				Security : VPN :	Tunnels					
_	Add Tunnel									
	Source Address	Source Mask	Destination Address	Destination Mask	Destination Gateway	Profile	Authentication	Protocol	Always Up	
						Default 🗸	Default 🗸	any 🗸	No 🗸	
Reset Settings Apply Settings Existing VPN Tunnels										
				Existing VPN Tu	nnels					
ID S	Source Address	Source Mask	Destination Address	Existing VPN Tu Destination Mask	nnels Destination Gateway	Profile	Authentication	Protocol	Always Up	Delete
		Source Mask 255.255.255.0		Destination Mask	Destination	Profile	Authentication	Protocol		Delete

Successful VPN connection can be verified

ID	Source Address	Destination Address	Next Hop		Statu	s		Time Remaining (secs)	Restart
1	192.168.2.0	10.10.10.0	10.10.10.2		VPN (qu		2555	
			Security	Refresh	Details	gs			
	Source Address	Destinati Addres	on Inbound s SPI	Outbound SPI	Remaining Time (secs)	inbound Packets	Outbound Packets		
	192.168.2.0) 10.10.10	.0 FD4FB110	84276FB2	2530	4	4		

Saving Configurations

Please make sure you SAVE the configurations we have made by hitting the "SAVE" ICON at the bottom right of the WEB screen, the button is highlighted when there are configurations that have not been saved.

Rever	t Save	Save As	Logout
Rever		Save As	Logout

Configurations for DX940e C (Substation Locations)

Overview of configurations steps

- 1. Naming the Dx940e
- 2. Ethernet ports
- 3. T1 WAN Port
- 4. Frame Relay
- 5. IP address assignments
- 6. BGP routing
- 7. VPN setup
- 8. Serial Ports
- 9. Terminal Server
- 10. Saving configurations

Naming the DX940e

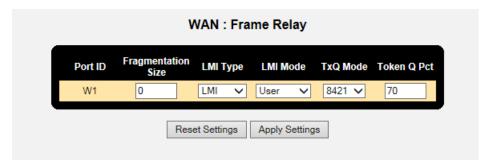
The Administration menu gives a few options for naming/location and contact..

System Name:	DX940e C			
System Location:	Substation Locations			
System Contact:	System Contact			
System Mode:	Normal 🗸			
System Prompt:	MagnumDX			
TCP KeepAlive:	15			
System Description	: DX940e v1.0.2 (Y2)			
Serial Number:	680100046			
Licenses:	SECURE+ADVAR			
Upgrade State:	UPGRADED			
IP Address:	192.168.4.2			
MAC Address:	00:20:61:1F:0F:90			
Free Space (KB):	51431			
Uptime:	2 days, 23 hours, 59 minutes			

Ethernet Ports

There is no requirment for ethernet ports for this application.

T1 WAN Port


Physical port settings for the T1 interface, set timeslot bandwidth to 64k, Clock Received and Admin enable, all other values leave as defaults

WAN : Port Settings								
Port Name	Timeslot Bandwidth	Clock	Admin Status	Mode	Time Slots	Frame Types	Line Codes	Line Build Out
WAN-01	64k 🗸	Received \checkmark	Enabled 🗸	T1 🗸	1-24	ESF (T1) 🗸	B8ZS (T1) 🗸	0to133 💊
		Port Name Bandwidth	Port Name Bandwidth Clock	Port Name Bandwidth Clock Status	Port Name Bandwidth Clock Status Mode	Port Name Bandwidth Clock Status Mode Time Slots	Port Name Bandwidth Clock Status Mode Time Slots Frame Types	Port Name Bandwidth Clock Status Mode Time Slots Frame Types Line Codes

If this is correct then looking at T1 status should look like this.

WAN : Port Status							
Port ID	Line State	LMI State	Oper State				
W1	OK	Up	Up				

Then we select if we want to employ the LMI management channel, unfortunately there are 3 variants, but Verizon uses CISCO and so the LMI type should be the original LMI version, and select User role.

Last step here is to define a DCLI for the IP traffic application, here with picked DLCI 100, but the actual DLCI would have been provided by Verizon. Set the application for this DLCI to IP=YES and Layer3-IP.

		WAN : I	OLCI Sett	ings					
Add DLCI									
Port ID	DLCI	CIR	IP	EEK	ТҮРЕ				
W1 🗸			Yes 🗸	None	✓ Layer3-IP	\sim			
				0					
		Reset Setting	gs Apply	Settings					
		Exi	sting DLCIs						
Port ID	DLCI	CIR	IP	EEK	TYPE	Delete			
W1	100	Ye	es 🗸 🛛 No	ne 🗸 La	ayer3-IP 🗸				
					Vendor S	Specific Detai			

The status the DLCI can be seen here.

WAN : DLCI Status									
Port ID	DLCI	State	Rx Packets	Rx Octets	Tx Packets	Tx Octets	Rx Drops	Tx Drops	
W1	100	Active	64005	4461561	72364	5527556	0	0	

IP addresses

We had previously set the IP address of the DX940e to 192.168.2.4/24 but it can be changed from within this sub-menu. We only will use port 6 for web interface configuration.

So with simply add in a new IP address for the WAN port 10.10.10.2/24 $\,$

Routing : IP Addresses									
Interface	DHCP?	Address	Subnet Mask	Remote Address	System	Status			
Default	No 🗸 1	92.168.4.2	255.255.255.0		۲	Up			
W1-DLCI 100	No 🗸 1	0.10.10.2	255.255.255.0		0	Up			
CELL1	No				\circ	Down			
					<u>Ot</u>	her Optior			
	[Refresh Re	eset Settings Apply	Settings					

BGP Routing

When using a Verizon carrier service like MPLS this usually requires BGP as the routing protocol of preference.

Starting with Global Settings we enable to feature, assign the AS number, and the Router ID which is simply the IP address of the Ethernet port connecting to the Verizon MPLS service.

BGP Mode:	Enabled 🗸
AS Number:	40
Router ID:	10.10.10.2
eBGP Admin Distance:	20
iBGP Admin Distance:	200
Include Ext OSPF:	Disabled 🗸
Event Level	High 🗸

Next BGP Peer Settings, IP addresses for each end of the connection and associated AS numbers. Here I left the Profile as "default" but we will make changes to that profile next.

	GP me	Peer IP Addre	ess Local IP Add	ress Pe		al AS Ti	old mer Profi ;ec)	le Inpu Filte			rd
bgp-	1	0.0.0.0	0.0.0	1	1	40	Default	t 🗸 NONE	V NONE V	~	
				Rese	t Settings Existin	Apply S g Peers	Settings				
						Lold					
BGP Name	Pee	r IP Address	Local IP Address	Peer AS	Local AS	Hold Timer (sec)	Profile	Input Filter	Output Filter	MD5 Password	Delet

Modify the "default" profile next, here we have selected "Redist Static and BGP", this just means we will share information of local IP addresses into the BGP protocol and also learnt IP addresses through BGP placed into the routing table.

ime Default Router		Add I Redist Redis	New Profile at Redist			
me Router		edist Redis	t Dodiet			
		RIP OSPI			vate Local Pref	TCP Passive
No 🗸	No 🗸 N	o 🗸 No 🔪	No <	100 No	✓ 100	No 🗸
		Exist	ing Profiles			
		Redist I OSPF	Redist We BGP We	eight Private AS		TCP Issive Delete
No 🗸 Ye	s 🗸 No 🗸	' No 🗸 🗋	Yes 🗸 100	Yes 🗸	100 No	• •
	Router St	Router Static RIP	Exist Default Redist Redist Redist I Router Static RIP OSPF	Existing Profiles Default Redist Redist Redist Redist Router Static RIP OSPF BGP	Existing Profiles Default Redist Redist Redist Redist Weight Private Router Static RIP OSPF BGP Weight AS	Existing Profiles Default Redist Redist Redist Redist Weight AS Local Pref Pa Router Static RIP OSPF BGP

If the unit is connected to the Verizon circuit we should see status information similar to this

Version	AS#	BGP State	Nets Rcvd	Pkts Sent	Pkts Rcvd	TCP/MD5 Session	Reset	
4	30	Established	2	125	127	No	None	~
				RCVO	RCV0 Sent	Reva Sent Reva	RCVa Sent RCVa Session	RCVG Sent RCVG Session

And the RIB table populated with learnt IP addresses.

		I	Routing	g : BGP	: RIB			
Prefix	Bits	Source Peer #	Source AS#	Number Hops	Weight	Origin	Local Pref	eBGP/ iBGP
192.168.3.0	24	10.10.10.1	30	1	100	2	0	е
192.168.2.0	24	10.10.10.1	20	2	100	1	0	е

Finally a look at the full IP routing table to check we have full connectivity of the network

Route Destination	Route Mask	Next Hop	Administrative Distance	Metric	Age	Туре
10.10.10.0	255.255.255.0	10.10.10.2	0	0		Local
10.10.10.2	255.255.255.255	10.10.10.2	0	0		
127.0.0.1	255.255.255.255	127.0.0.1	0	0		
192.168.2.0	255.255.255.0	10.10.10.1	1	0		VPN
192.168.3.0	255.255.255.0	10.10.10.1	20	0	5658	BGP
192.168.4.0	255.255.255.0	192.168.4.2	0	0		Local
192.168.4.2	255.255.255.255	192.168.4.2	0	0		

VPN Setup

Since we are using a Public Verizon MPLS service where it might be possible that the SCADA information could be eavesdropped we use a VPN tunnel to provide both authentication and encryption services for the SCADA traffic.

Starting with Global Settings, turn on "send initial contact"

curity : VPN :	Globa	I Settir
Send Initial Conta	act:	Yes 🗸
Automatic VPN R	outes:	Yes 🗸
dministrative Di	stance:	10

Next we build a new profile and selected the version of the IPSec VPN and the encryption settings for the Authentication and Data Transfer phases.

Here I selected the most secure settings, IPsec version IKEV2, AES256 encryption strength and both IKE and ESP Hash to SHA256.

				Securit	y : VPN : Pi	rofiles				
_					Add Profile					
Name	IKE Versie	on NAT Enable	ed IKE Encryptio	n IKE Hash	IKE Lifetim (secs)	e ESP Encryption	ESP Hasi	ESP Lifetime (secs)	DH Group	DPD Poll Time
	IKEV1	✓ NO ✓	3DES N	SHA V	28800	3DES N	SHA N	3600	2 🗸	30
				-						
Name	IKE Version	NAT Enabled	IKE Encryption		IKE Lifetime	ESP	ESP Hash	ESP Lifetime		Poll Delet
Name Default	IKE Version	NAT Enabled			IKE Lifetime (secs)		ESP Hash	(secs)		Poll Delet
				IKE Hash	IKE Lifetime (secs) 28800	ESP Encryption		(secs) 3600	Group Ti	

Now for the actual authentication "shared secret", we can use Pre-Shared Key or you may prefer to build your own private certificates, not covered here. The Pre-shared Key method is just a string of characters, like a password, that is used during authentication of the 2 VPN peers. In this example it was set to "howardsway". As you can see the string is not displayed for security purposes but it is set.

Name		T	Developed Key			6. J		
Name	PSK	Type	Preshared Key		Preshared Key Veri	None	Certificat	~
			Reset Settings	Арр	ly Settings			
			Existing	Metho	ods			
Name	Тур	8	Preshared Key	Pr	eshared Key Verify	Local Certi	ficate	Dele
Default	PSK	>				None	<	
coned	PSK					None	\sim	

With all that set we can finally define the tunnel end points, so we want the tunnel to exist throughout the Verizon network, so in this example we want any traffic between 192.168.2.x and 10.10.10.x, ie the Control Station network and remote RTU network and be protected throughout the "public" network and using the new profile and authentication methods. Note the Destination gateway is the IP address of the substation DX940e WAN port and we also selected that the VPN be up and available at all times.

				Security : VPN : Add Tunne						
	Source Address	Source Mask	Destination Address	Destination Mask	Destination Gateway	Profile	Authentication	Protocol	Always Up	
						Default 🗸	Default 🗸	any 🗸	No 🗸	
1				Existing VPN Tu	nnels					
ID	Source Address	Source Mask	Destination Address	Existing VPN Tu Destination Mask	nnels Destination Gateway	Profile	Authentication	Protocol	Always Up	Delete
ID	Source Address	Source Mask 255.255.255.0		Destination Mask	Destination	Profile	Authentication	PTOLOCOI	Always Up No V	Delete

Successful VPN connection can be verified

				Tunnel Statistics	
ID	Source Address	Destination Address	Next Hop	Status	Time Remaining Restar (secs)
1	10.10.10.0	192.168.2.0	192.168.3.3	VPN up	2156

Security : VPN : Details

	Destination Address	Inbound SPI	Outbound SPI	Remaining Time (secs)		Outbound Packets
10.10.10.0	192.168.2.0	3C0C6653	4C4AC1DF	2127	11	13

Serial Ports

All serial ports in the default configuration are disabled, so we need to enable the port, and perhaps name it.

Port ID	Port Name	Profile	Admin Status
S1	RTU	Default 🗸	Enabled 🗸
S2	Serial-02	Default 🗸	Disabled 🗸
S3	Serial-03	Default 🗸	Disabled \checkmark
S4	Serial-04	Default 🗸	Disabled 🗸

Next we setup a profile that matches the RTU, Baud, Parity, Stops bits etc. We also need to set "Ignore DSS" to YES, and adjust the Pkt time to 20 versus 200.


				Serial :	Ports : Pro	ofiles					
				Add	d New Profile						
Profile Nan	ne Interfac Standa		d Dat Bit		Parity	lgnore DSS	Flow Cont	rol Pkt C	Char Pkt Tim (msecs		T/A Time (msecs)
New Profile	RS232	▶ 9600	× 8 V	/ 1 /	None 🗸	No 🗸	None	✓ Non	e 200	1024	0
			L	Reset Settir	sting Profiles	Settings	1				
Profile Name	Interface Standard	Speed	Data Bits	Stop Bits	Parity Igno		w Control	Pkt Char	PKL TIMe	Size Ti	/A ne Delet ecs)
Default	RS232 V	9600 🗸	8 🗸	1 🗸 No	one 🗸 Yes	✓ Non	e 🗸	None		024 0	
				Reset Settin	igs Apply	Settings]				

We can check the status, the Ignore DSS parameter enables the port rather than needing additional signals like DTR from the RTU.

	Serial	: Ports :	Status	•
Port ID	DCD	CTS	DSR	Oper State
S1	Off	Off	Off	Up
S2	Off	Off	Off	Disabled
S3	Off	Off	Off	Disabled
S4	Off	Off	Off	Disabled

Terminal Server

The terminal server acts as the transition for the IP TCP session carrying DNP3 traffic and passing just the payload to the serial port.

The channel settings shows call direction inbound, allows for any IP to be used, and we simply modified the listening TCP port number to match our DNP3 session, in this case 20000.

Po	rt ID [Call irectio	Ses on Ty		ty (DiffSe		load Local I fset		cal Remote Nam CP IP		note Maxim CP Connect	ione T	etry ime ecs)
S	$\mathbf{\mathbf{\vee}}$	In 🗸	' Raw	✓ Defai	ılt	✓ Yes	s 🗸 Any	✔ 0		0	5	3)
Port ID	Cal Direct		ession Type	Priority (D	iffServ) ^F	Payload Offset	Existing C Local IP	hannels Local TCP	Remote Name or IP	Remote TCP	Maximum Connections	Retry Time	Dele
S1	In	R	aw 🗸	Default	~	Yes 🗸	Any 🗸	20000		0	5	(secs) 30	
	In		aw 🗸	Default	~	Yes 🗸	Any 🗸	10202		0	5	30	
S2			aw 🗸	Default		Yes 🗸	Any 🗸	10203		0	5	30	
S2 S3	In	R											

Saving Configurations

Please make sure you SAVE the configurations we have made by hitting the "SAVE" ICON at the bottom right of the WEB screen, the button is highlighted when there are configurations that have not been saved.

SCADA Host Connection

So to make the SCADA Host connect we simply launch a DNP3 TCP session to the WAN IP port address of the DX940e using the port number "20000". So in this case TCP 10.10.10.2 port 20000.

We can check the connection by looking here at the channel status of the Terminal Server/Serial port

	inel								
Serial : Terminal Server : Connections									
-									
Port ID	Connection Type	Session Type	Local IP	Local TCP	Remote Name or IP	Remote TCP	Tx Octets	Rx Octets	Delete
Port ID			Local IP 10.10.10.2				Tx Octets 142	Rx Octets 142	Delete

Saving Configurations

Please make sure you SAVE the configurations we have made by hitting the "SAVE" ICON at the bottom right of the WEB screen, the button is highlighted when there are configurations that have not been saved.

Revert	Save	Save As	Logout